Making Unique Observations in a Very Cluttered World

Tuesday, 10 March 2015

Venezuela To Start Fingerprinting Shoppers before they can buy bread and other staples, to combat food shortages -

Venezuela To Start Fingerprinting Shoppers before they can buy bread and other staples, to combat food shortages - 

Back in August, when we wrote about the latest instance of trouble in Maduro's socialist paradise, we cautioned that as a result of the economic collapse in the Latin American nation (and this was even before the plunge in crude made the "paradise" into the 9th circle of hell), Venezuelans soon may need to have their fingerprints scanned before they can buy bread and other staples. This unprecedented step was proposed after Maduro had the brilliant idea of proposing mandatory grocery fingerprinting system to combat food shortages. He said then that "the program will stop people from buying too much of a single item", but did not say when it would take effect.

Privacy concerns aside (clearly Venezuelans have bigger, well, smaller fish to fry) there was hope that this plunge into insanity would be delayed indefinitely, as the last thing Venezuela's strained economy would be able to handle is smuggling of the most basic of necessities: something such a dramatic rationing step would surely lead to.

Unfortunately for the struggling Venezuelan population, the time has arrived and as AP reported over the weekend, Venezuela "will begin installing 20,000 fingerprint scanners at supermarkets nationwide in a bid to stamp out hoarding and panic buying" as of this moment.

The government has been selectively rolling out the rationing system for months at state-run supermarkets along the western border with Colombia where smuggling of price-controlled goods is a major problem.

On Saturday, President Nicolas Maduro said that seven large private retail chains had voluntarily agreed to install the scanners.
Last month the owners of several chains of supermarkets and drugstores were arrested for allegedly artificially creating long queues by not opening enough tills.

It gets better: Maduro also accused Colombian food smugglers of buying up price-controlled goods in state-run supermarkets along the border.

For the first time in recent history the economists who say the effort is bound to fail, are right. They blame Venezuela's rigid price controls that discourage local manufacturing and the recent slide in world oil prices that has further diminished the supply of dollars available to import everything from milk to cars.

As BBC further adds, in January the hashtag #AnaquelesVaciosEnVenezuela ("Empty shelves in Venezuela") became a worldwide Twitter trend, with over 200,000 tweets as Venezuelans tweeted pictures of empty supermarket shelves around the country.


New memories implanted in mice while they sleep... - Same technique could alter human mind... -

New memories implanted in mice while they sleep... - Same technique could alter human mind... - 

Sleeping minds: prepare to be hacked. For the first time, conscious memories have been implanted into the minds of mice while they sleep. The same technique could one day be used to alter memories in people who have undergone traumatic events.

When we sleep, our brain replays the day's activities. The pattern of brain activity exhibited by mice when they explore a new area during the day, for example, will reappear, speeded up, while the animal sleeps. This is thought to be the brain practising an activity - an essential part of learning. People who miss out on sleep do not learn as well as those who get a good night's rest, and when the replay process is disrupted in mice, so too is their ability to remember what they learned the previous day.

Karim Benchenane and his colleagues at the Industrial Physics and Chemistry Higher Educational Institution in Paris, France, hijacked this process to create new memories in sleeping mice. The team targeted the rodents' place cells - neurons that fire in response to being in or thinking about a specific place. These cells are thought to help us form internal maps, and their discoverers won a Nobel prize last year.

Benchenane's team used electrodes to monitor the activity of mice's place cells as the animals explored an enclosed arena, and in each mouse they identified a cell that fired only in a certain arena location. Later, when the mice were sleeping, the researchers monitored the animals' brain activity as they replayed the day's experiences. A computer recognised when the specific place cell fired; each time it did, a separate electrode would stimulate brain areas associated with reward.

When the mice awoke, they made a beeline for the location represented by the place cell that had been linked to a rewarding feeling in their sleep. A brand new memory - linking a place with reward - had been formed.

This must be the place

It is the first time a conscious memory has been created in animals during sleep. In recent years, researchers have been able to form subconscious associations in sleeping minds - smokers keen to quit can learn to associate cigarettes with the smells of rotten eggs and fish in their sleep, for example.

Previous work suggested that if this kind of subconscious learning had occurred in Benchenane's mice, they would have explored the arena in a random manner, perhaps stopping at the reward-associated location. But these mice headed straight for the location, suggesting a conscious memory. "The mouse develops a goal-directed behaviour to go towards the place," says Benchenane. "It proves that it's not an automatic behaviour. What we create is an association between a particular place and a reward that can be consciously accessed by the mouse."

"The mouse is remembering enough abstract information to think ‘I want to go to a certain place', and go there when it wakes up," says neuroscientist Neil Burgess at University College London. "It's a bigger breakthrough [than previous studies] because it really does show what the man in the street would call a memory - the ability to bring to mind abstract knowledge which can guide behaviour in a directed way."

Benchenane doesn't think the technique can be used to implant many other types of memories, such as skills - at least for the time being. Spatial memories are easier to modify because they are among the best understood.

His team's findings also provide some of the strongest evidence for the way in which place cells work. It is almost impossible to test whether place cells function as an internal map while animals are awake, says Benchenane, because these animals also use external cues, such as landmarks, to navigate. By specifically targeting place cells while the mouse is asleep, the team were able to directly test theories that specific cells represent specific places.

"Even when those place cells fire in sleep, they still convey spatial information," says Benchenane. "That provides evidence that when you've got activation of place cells during the consolidation of memories in sleep, you've got consolidation of the spatial information."

Benchenane hopes that his technique could be developed to help alter people's memories, perhaps of traumatic events (see "Now it's our turn", below).

Loren Frank at the University of California, San Francisco, agrees. "I think this is a really important step towards helping people with memory impairments or depression," he says. "It is surprising to me how many neurological and psychiatric illnesses have something to do with memory, including schizophrenia and obsessive compulsive disorder."

"In principle, you could selectively change brain processing during sleep to soften memories or change their emotional content," he adds.

Now it's our turn
It's a familiar feat from films such as Inception and Total Recall, but will we ever really be able to plant a memory in someone else's mind as they sleep?

Karim Benchenane at the Industrial Physics and Chemistry Higher Educational Institution in Paris, France, who implanted new memories into mice while they snoozed (see main story), hopes his technique can be developed to alter problematic memories in people. The idea is to attach good thoughts to bad memories, such as those that linger after traumatic experiences. "If you can identify where in the brain a person is reactivating a phobia-associated experience, you might be able to create a positive association," he says.

Fake friends

You could probably use the same approach to alter a person's memory to your own advantage.

Evidence suggests that single neurons can represent specific people in the brain – such cells have been termed "Jennifer Aniston cells" after a woman in a study was found to have one brain cell that only fired in response to images of the actress (Nature, doi.org/cmzdk9). If you could identify a neuron that represents you in someone else's brain and then stimulate areas of the brain that create a rewarding feeling every time that neuron fires, you might – in theory – be able to make that person like you more. "The fact that you can do it during sleep is a bit worrying, in that it implies that you could make somebody want something even if they didn't really," says Neil Burgess at University College London.

It is much more difficult to create an entirely new memory from scratch. Benchenane's team drew on the mice's existing memories of space and altered them. "It's not like they have created a whole new space that the animal is exploring in its head," says Loren Frank at the University of California, San Francisco. "Real experiences involve all of our senses and movement through space, and people, places and things," he says. "We are nowhere near recreating that richness – what we can do is take advantage of it and modify it."

These modifications could be for better or worse, says Frank. "There are a few ways of thinking about this – there's the medical application, and there's the more Orwellian application, where the government gets inside people's heads and starts to control them," he says. "It's unbelievably hard to do any of this, so I'm not deeply worried about it, but it's not impossible that it could happen."

Read more -